

Warning

Veros-BGC is not yet compatible with Veros v1.x.x. The last compatible version is v0.2.3 [https://veros.readthedocs.io/en/v0.2.3/].

A biogeochemistry module for Veros

Veros-BGC adds a full-fledged NPZD (Nutrients-Phytoplankton-Zooplankton-Detritus) loop on top of the Veros [https://readthedocs.io/veros] ocean model, with support for custom tracers and additional rules.

Veros-BGC is based on MOBI [http://people.oregonstate.edu/~schmita2/Models/MOBI/index.html] by Andreas Schmittner [http://people.oregonstate.edu/~schmita2/], Oregon State University.

Steffen Randrup [https://github.com/SteffenRandrup] created Veros-BGC as a part of his Master’s thesis.

Usage

	Basic usage

	Custom rules and tracers
	Tracer classes

	Rules

	Activation

Reference

	Setup gallery

	Available settings

	Available variables

	Biogeochemistry diagnostic

More Information

	Veros core documentation [https://readthedocs.io/veros]

	Visit us on GitHub [https://github.com/team-ocean/veros-bgc]

Basic usage

First, install Veros-BGC:

$ pip install veros-bgc

To get started with a new setup, you can use bgc_global_4deg as a template:

$ veros copy-setup bgc_global_4deg

To enable Veros-BGC on a new setup, you will have to register it as a Veros plugin.
Add the following to your setup definition:

import veros_bgc

class MySetup(VerosSetup):
 __veros_plugins__ = (veros_bgc,)

This registers the plugin for use with Veros.
Then, you can use the Veros-BGC settings to configure Veros-BGC.
The most important settings is enable_npzd, which acts as a master switch for Veros-BGC:

class MySetup(VerosSetup):
 # ...

 def set_parameter(self, vs):
 vs.enable_npzd = True

See also

All new settings and variables defined by Veros-BGC in their respective sections.

Custom rules and tracers

The biogeochemistry module for Veros is designed for allowing construction of user defined ecosystems.
Base systems are made available for a basic Nutrients-Plankton-Zooplankton-Detritus, NPZD, system,
which can optionally be extended by a basic carbon cycle. Enabling the biogeochemistry module and
activating the basic NPZD system can be done by setting enable_npzd = True.

Ecosystems created with the biogeochemistry module are extensible and any components of them are
in principle replaceable. This is handled by three principles: Representation of model tracers by classes,
representation of interactions between tracers as rules, and separation of component creation from activation.

Tracer classes

All model tracers in the biogeochemistry module are created as instances of classes inheriting from a
base class NPZD_tracer. This class itself inherits from numpy.ndarray, which allows using it
like any other Veros variable. The concentration (or appropriate unit) of the tracer within each cell
in Veros’ grid is stored in the corresponding cell in the tracer grid. The base class defines attributes
for operations which may apply to any tracer.

Instances of this class must be created with a numpy array backing the tracer values. Preferably this
array was created in variables.py. Additionally a name must be supplied. This name will uniquely
identify the tracer during simulation. Optional arguments may be supplied:
transport By default this value is True. When transport is true, the tracer is transported
according to the selected transportation scheme. Setting a value for for sinking_speed will cause
the tracer to be included in calculations of sinking tracers. And setting light_attenuation will
block downward shortwave radiation proportionally to the concentration of the tracer.
This class may itself be used for tracers, which should not express any further features such
as the nutrients phosphate.

NPZD_tracer(vs.po4, 'po4')

Tracers which should express actionable features such as grazing, primary production must implement
certain methods. Methods to implement are mortality for mortality, recycle for recycling,
potential_growth for primary production. In addition to this methods should be supplied a list
of functions representing limiting in growth by nutrients. grazing for grazing. This method
should return dictionaries for grazing, digestion, excretion, and sloppy feeding. Where the keys
are names of the tracers, which have been grazed upon.
It is possible to add additional actionable methods by editing npzd.py.

Predefined tracers

A number of classes for tracers have been predefined. These classes can be instantiated with different
parameters to defined tracers with varying properties. For example creating tracers for coccolithophores
and phytoplankton can be done like

coccolithophores = Phytoplankton(np.zeros((3,vs.nx, vs.ny, vs.nz)), 'coccolithophores',
 light_attenuation=1,
 growth_parameter=0.9,
 recycling_rate=0.8,
 mortality_rate=0.7)

phytoplankton = Phytoplankton(vs.phytoplankton, 'phytoplankton',
 light_attenuation=vs.light_attenuation_phytoplankton,
 growth_parameter=vs.maximum_growth_rate_phyto,
 recycling_rate=vs.fast_recycling_rate_phytoplankton,
 mortality_rate=vs.specific_mortality_phytoplankton)

Base tracer

	
class veros_bgc.core.npzd_tracers.NPZD_tracer(input_array, name, sinking_speed=None, light_attenuation=None, transport=True, description=None)

	Bases: numpy.ndarray

Class for npzd tracers to store additional information about themselves.

Note

Inhenrits from numpy.ndarray to make it work seamless with array operations

	Parameters

	
	input_array (numpy.ndarray) – Numpy array backing data

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier for the tracer, which must be unique within a given configuration

	sinking_speed (numpy.ndarray, optional) – Numpy array for how fast the tracer sinks in each cell

	transport (bool [https://docs.python.org/3/library/functions.html#bool] = True, optional) – Whether or not to include the tracer in physical transport

	light_attenuation (numpy.ndarray, optional) – Factor for how much light is blocked

	
name

	Identifier for the tracer, which must be unique within a given configuration

	
description

	Description of the tracer represented by the class

	
transport

	Whether or not to include the tracer in physical transport

	
sinking_speed

	If set: how fast the tracer sinks in each cell

	Type

	numpy.ndarray, optional

	
light_attenuation

	If set: Factor for how much light is blocked

	Type

	numpy.ndarray, optional

Recyclable tracer

	
class veros_bgc.core.npzd_tracers.Recyclable_tracer(input_array, name, recycling_rate=0, **kwargs)

	Bases: veros_bgc.core.npzd_tracers.NPZD_tracer

A recyclable tracer

This would be tracer, which may be a tracer like detritus, which can be recycled

	Parameters

	
	input_array (numpy.ndarray) – Numpy array backing data

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier for the tracer, which must be unique within a given configuration

	recycling_rate – A factor scaling the recycling by the population size

	**kwargs – All named parameters accepted by super class

	
recycling_rate

	A factor scaling the recycling by the population size

	
+ All attributes held by super class

	

Plankton

	
class veros_bgc.core.npzd_tracers.Plankton(input_array, name, mortality_rate=0, **kwargs)

	Bases: veros_bgc.core.npzd_tracers.Recyclable_tracer

Class for plankton object, which is both recyclable and displays mortality

This class is intended as a base for phytoplankton and zooplankton and not
as a standalone class

Note

Typically, it would desirable to also set light attenuation

	Parameters

	
	input_array (numpy.ndarray) – Numpy array backing data

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier for the tracer, which must be unique within a given configuration

	mortality_rate – Rate at which the tracer is dying in mortality method

	**kwargs – All named parameters accepted by super class

	
mortality_rate

	Rate at which the tracer is dying in mortality method

	
+ All attributes held by super class

	

Phytoplankton

	
class veros_bgc.core.npzd_tracers.Phytoplankton(input_array, name, growth_parameter=0, **kwargs)

	Bases: veros_bgc.core.npzd_tracers.Plankton

Phytoplankton also has primary production

	Parameters

	
	input_array (numpy.ndarray) – Numpy array backing data

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier for the tracer, which must be unique within a given configuration

	growth_parameter – Scaling factor for maximum potential growth

	**kwargs – All named parameters accepted by super class

	
growth_parameter

	Scaling factor for maximum potential growth

	
+ All attributes held by super class

	

Zooplankton

	
class veros_bgc.core.npzd_tracers.Zooplankton(input_array, name, max_grazing=0, grazing_saturation_constant=1, grazing_preferences={}, assimilation_efficiency=0, growth_efficiency=0, maximum_growth_temperature=20, **kwargs)

	Bases: veros_bgc.core.npzd_tracers.Plankton

Zooplankton displays quadratic mortality rate but otherwise is similar to ordinary phytoplankton

	Parameters

	
	input_array (numpy.ndarray) – Numpy array backing data

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier for the tracer, which must be unique within a given configuration

	max_grazing – Scaling factor for maximum grazing rate

	grazing_saturation_constant – Saturation in Michaelis-Menten

	grazing_preferences – Dictionary of preferences for grazing on other tracers

	assimilation_efficiency – Fraction of grazed material ingested

	growth_efficiency – Fraction of ingested material resulting in growth

	maximum_growth_temperature (= 20) – Temperature in Celsius where increasing temperature no longer increases grazing

	**kwargs – All named parameters accepted by super class

	
max_grazing

	Scaling factor for maximum grazing rate

	
grazing_saturation_constant

	Saturation in Michaelis-Menten

	
grazing_preferences

	Dictionary of preferences for grazing on other tracers

	
assimilation_efficiency

	Fraction of grazed material ingested

	
growth_efficiency

	Fraction of ingested material resulting in growth

	
maximum_growth_temperature

	Temperature in Celsius where increasing temperature no longer increases grazing

	
+ All attributes held by super class

	

Extending tracers

The biogeochemistry tracers make use of the object oriented nature of Python to allow easy extensibility.
Tracers which exhibit nearly identical behavior can be created via extension. For example the
Zooplankton class overrides the mortality function defined by the Plankton class

class Zooplankton(Plankton):

 # ...

 @veros_method(inline=True)
 def mortality(self, vs):
 """
 Zooplankton mortality is modelled with a quadratic mortality rate
 """
 return self.mortality_rate * self ** 2

By using this approach you only have to focus on the differences between tracers.

Rules

Creating your tracers as objects does not in itself add any time evolution to the system. You must
also specify the interaction between the tracers. This is done by creating rules. A rule specifies
the flow from one tracer to another. An ecosystem can be defined as a collection of rules each
specifying part of the flow between tracers.

Rules consist of a function describing the interaction, the name of the source tracer and the name
of the sink tracer. The function itself may be used in several rules.
The rule function has access to any variable stored in the Veros object. This includes results of
the methods described in the previous section. An example rule could look like

@veros_method(inline=True)
def recycling_to_po4(vs, source, sink):
 return {source: -vs.recycled[source], sink: vs.redfield_ratio_PN * vs.recycled[source]}

The function returns a dictionary. The keys of the dictionary must be names of the tracers, which
are affected by the rule. The values are numpy arrays corresponding to the change in the tracer.
The return dictionary is not strictly required to contain two keys. If a rule only represents part
of an interaction, just one key can be included. Any number of entries in the dictionary will be
processed, but a rule is intended to represent a flow between two tracers.
The rule should then be registered with the names of the source and sink to make it available for
use in Veros.

register_npzd_rule(vs, 'recycle_phytoplankton_to_po4', (recycling_to_po4, 'phytoplankton', 'po4'))

The rule is registered with the Veros object as the first argument followed by a unique name for the rule
and a tuple consisting of the rule function, the name of the source, and the name of the sink. Those
two names will be passed as arguments to the function. The rule name is used for selecting the rule
for activation.
The tuple may also be replaced by a list containing names of other rules. This collection of rules
may later be activated using just the name the list was registered with.

Optional arguments

Rules can also be registered with optional arguments.

The label argument specifies a displayed
name which is shown in the graph generated by the biogeochemistry diagnostics.

boundary may take 3 values. ‘SURFACE’, ‘BOTTOM’ or None (default). If ‘SURFACE’ the rule only applies
to the top layer of the grid. ‘BOTTOM’ means the rule only applies to the cells immediately above the
bottom. None means the rule applies to the entire grid.

group specifies in which of three execution locations the rule will be applied. The ‘PRIMARY’
group is the default group. Rules in this group will be evaluated several times in a loop. The number
of times specified by the ratio between vs.dt_tracer and vs.dt_bio. The result of the
rule will be time stepped and added to the tracer concentrations. The ‘PRE’ group is evaluated once
per tracer time step before the ‘PRIMARY’ loop. The results of these rules are not time stepped before
adding to the result to the relevant tracers. The ‘POST’ group is evaluated once before the ‘PRIMARY’
rules. Time stepping is left out of ‘PRE’ and ‘POST’ rules in order to allow them to clean up or
reuse results from other rules.

Difference between rules and tracer classes

The difference between rules and classes and their methods is, that the tracer objects themselves do not
modify tracer concentrations. Only the rules should influence the time evolution of the tracers.
The results of the methods may be used in rules.

Activation

In order to use the created classes and rules. They must be activated. Tracers are activated by register_npzd_data. Rules are activated by adding their names to npzd_selected_rules for example.

detritus = Recyclable_tracer(vs.detritus, 'detritus',
 sinking_speed=dtr_speed,
 recycling_rate=vs.remineralization_rate_detritus)
register_npzd_data(vs, detritus)

This adds a tracer with the name ‘detritus’ to the model which sinks and a recycling method.

Rules which have been registered with register_npzd_rule are activated by selecting them with
select_npzd_rule. select_npzd_rule accepts rule names. If the name represents a collection of
rules, each rule in the collection is activated.

activate the npzd_basic_phytoplankton_grazing rule
select_npzd_rule(vs, 'npzd_basic_phytoplankton_grazing')

a list of rules, which have been registered with a single name
may be activated collectively from that name

register_npzd_rule(vs, 'group_npzd_basic', [
 'npzd_basic_phytoplankton_grazing',
 'npzd_basic_phytoplankton_mortality',
 'npzd_basic_phytoplankton_fast_recycling',
 'npzd_basic_phytoplankton_primary_production',
 'npzd_basic_zooplankton_grazing',
 'npzd_basic_zooplankton_mortality',
 'npzd_basic_zooplankton_sloppy_feeding',
 'npzd_basic_detritus_remineralization',
 'npzd_basic_detritus_grazing',
 'npzd_basic_detritus_bottom_remineralization'
])

select_npzd_rule(vs, 'group_npzd_basic') # This activates all the rules in the collection

The example setup file for biogeochemistry demonstrates how a configuration file can be
used to activate rules.

Setup gallery

This page gives an overview of the available model setups. To copy the setup file and additional input files (if applicable) to the current working directory, you can make use of the veros copy-setup command.

Example:

$ veros copy-setup bgc_global_4deg

Configurations with Biogeochemistry

	Global four-degree model with BioGeoChemistry

[image: Surface zooplancton after 60 years]

	

Global four-degree model with BioGeoChemistry

	
class veros_bgc.setup.bgc_global_4deg.GlobalFourDegreeBGC(state=None, override=None, plugins=None)

	Bases: veros.veros.VerosSetup

Global 4 degree model with 15 vertical levels and biogeochemistry.

	Reference:
	Steffen Ole Randrup Kristensen. (2019). Extending the Veros climate simulator with biochemistry.
Model design and AMOC collapse, MSc, 67p.
https://sid.erda.dk/share_redirect/CVvcrowL22/Thesis/SteffenRandrup_MSc_thesis.pdf.

Available settings

	
VerosState.enable_npzd = False

	

	
VerosState.recycled = {}

	Amount of recycled material [mmol/m^3] for NPZD tracers

	
VerosState.mortality = {}

	Amount of dead plankton [mmol/m^3] by species

	
VerosState.net_primary_production = {}

	Primary production for each producing plankton species

	
VerosState.plankton_growth_functions = {}

	Collection of functions calculating growth for plankton by species

	
VerosState.limiting_functions = {}

	Collection of functions calculating limits to growth for plankton by species

	
VerosState.npzd_tracers = {}

	Dictionary whose values point to veros variables for npzd tracers

	
VerosState.npzd_rules = []

	List of active rules in primary loop of BGC

	
VerosState.npzd_pre_rules = []

	List of rules to executed in the pre loop of BGC

	
VerosState.npzd_post_rules = []

	Rules to be executed after primary bio loop

	
VerosState.npzd_available_rules = {}

	Every rule created is stored here, can be individual rules or collections of rules

	
VerosState.npzd_selected_rule_names = []

	name of selected rules

	
VerosState.npzd_export = {}

	Exported material from npzd tracers by sinking

	
VerosState.npzd_import = {}

	Imported material from npzd tracers from layer above. Takes same value as npzd_export scaled by level differences. Sea surface is 0

	
VerosState.zprefs = {}

	Preference for zooplankton to graze on named tracers

	
VerosState.npzd_transported_tracers = []

	List of NPZD tracers which are transported

	
VerosState.npzd_advection_derivatives = {}

	Stores derivates of advection term for tracers

	
VerosState.temporary_tracers = {}

	Temporary copy of npzd_tracers for biogeochemistry loop

	
VerosState.light_attenuation_phytoplankton = 0.047

	Light attenuation of phytoplankton

	
VerosState.light_attenuation_water = 0.04

	Light attenuation of water [1/m]

	
VerosState.light_attenuation_ice = 5.0

	Light attenuation of ice [1/m]

	
VerosState.remineralization_rate_detritus = 0

	Remineralization rate of detritus [1/sec]

	
VerosState.bbio = 0

	the b in b ** (c*T)

	
VerosState.cbio = 0

	the c in b ** (c*T)

	
VerosState.maximum_growth_rate_phyto = 0.0

	Maximum growth rate parameter for phytoplankton in [1/sec]

	
VerosState.maximum_grazing_rate = 0

	Maximum grazing rate at 0 deg C [1/sec]

	
VerosState.fast_recycling_rate_phytoplankton = 0

	Fast-recycling mortality rate of phytoplankton [1/sec]

	
VerosState.saturation_constant_N = 0.7

	Half saturation constant for N uptake [mmol N / m^3]

	
VerosState.saturation_constant_Z_grazing = 0.15

	Half saturation constant for Z grazing [mmol/m^3]

	
VerosState.specific_mortality_phytoplankton = 0

	Specific mortality rate of phytoplankton

	
VerosState.quadric_mortality_zooplankton = 0

	Quadric mortality rate of zooplankton [1/ (mmol N ^2 s)]

	
VerosState.assimilation_efficiency = 0

	Effiency with which ingested prey is converted growth in zooplankton, range: [0,1]

	
VerosState.zooplankton_growth_efficiency = 0

	Zooplankton growth efficiency, range: [0,1]

	
VerosState.wd0 = 0.0

	Sinking speed of detritus at surface [m/s]

	
VerosState.mwz = 1000

	Depth below which sinking speed of detritus remains constant [m]

	
VerosState.mw = 2.3148148148148148e-07

	Increase in sinking speed with depth [1/sec]

	
VerosState.zprefP = 1

	Zooplankton preference for grazing on Phytoplankton

	
VerosState.zprefZ = 1

	Zooplankton preference for grazing on other zooplankton

	
VerosState.zprefDet = 1

	Zooplankton preference for grazing on detritus

	
VerosState.redfield_ratio_PN = 0.0625

	Refield ratio for P/N

	
VerosState.redfield_ratio_CP = 113.6

	Refield ratio for C/P

	
VerosState.redfield_ratio_ON = 10.6

	Redfield ratio for O/N

	
VerosState.redfield_ratio_CN = 7.1

	Redfield ratio for C/N

	
VerosState.trcmin = 1e-13

	Minimum npzd tracer value

	
VerosState.u1_min = 1e-06

	Minimum u1 value for calculating avg J

	
VerosState.zooplankton_max_growth_temp = 20.0

	Temperature (C) for which zooplankton growth rate no longer grows with temperature

	
VerosState.capr = 0.022

	Carbonate to carbon production ratio

Available variables

	Attributes:
	
: Time-dependent

: Included in snapshot output by default

: Written to restart files by default

Conditional variables

enable_npzd

	
VerosState.bottom_mask

	
	Units

	

	Dimensions

	xt, yt, zt

	Type

	int8

	Attributes

	

Bottom mask

	
VerosState.phytoplankton

	
	Units

	mmol/m^3?

	Dimensions

	xt, yt, zt, timesteps

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Concentration of phytoplankton in grid box

	
VerosState.zooplankton

	
	Units

	mmol/m^3?

	Dimensions

	xt, yt, zt, timesteps

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Concentration of zooplankton in grid box

	
VerosState.detritus

	
	Units

	mmol/m^3?

	Dimensions

	xt, yt, zt, timesteps

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Concentration of detritus in grid box

	
VerosState.po4

	
	Units

	mmol/m^3?

	Dimensions

	xt, yt, zt, timesteps

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Concentration of phosphate in grid box

	
VerosState.swr

	
	Units

	W/m^3?

	Dimensions

	xt, yt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Incomming solar radiation at sea level

	
VerosState.rctheta

	
	Units

	1

	Dimensions

	yt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Effective vertical coordinate for incoming solar radiation

	
VerosState.dayfrac

	
	Units

	1

	Dimensions

	yt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Fraction of day with sunlight

	
VerosState.excretion_total

	
	Units

	mmol/m^3 / s

	Dimensions

	xt, yt, zt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Zooplankton grazing causes excretion. This stores the total excreted amount for all consumed tracers

enable_carbon

	
VerosState.dic

	
	Units

	mmol/m^3

	Dimensions

	xt, yt, zt, timesteps

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Concentration of inorganic carbon ions and molecule

	
VerosState.alkalinity

	
	Units

	mmol/m^3

	Dimensions

	xt, yt, zt, timesteps

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Combined bases and acids

	
VerosState.atmospheric_co2

	
	Units

	ppmv

	Dimensions

	xt, yt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Atmospheric co2 concentration

	
VerosState.cflux

	
	Units

	mmol/m^2/s

	Dimensions

	xt, yt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Flux of CO2 over the ocean-atmosphere bounday

	
VerosState.wind_speed

	
	Units

	m/s

	Dimensions

	xt, yt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Just used for debugging. Please ignore

	
VerosState.hSWS

	
	Units

	1

	Dimensions

	xt, yt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

[H] in Sea water sample

	
VerosState.pCO2

	
	Units

	?ppmv/atm?

	Dimensions

	xt, yt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Partial CO2 pressure

	
VerosState.dpCO2

	
	Units

	?ppmv/atm?

	Dimensions

	xt, yt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Difference in ocean CO2 pressure and atmospheric

	
VerosState.co2star

	
	Units

	?ppmv?

	Dimensions

	xt, yt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Adjusted CO2 in ocean

	
VerosState.dco2star

	
	Units

	?ppmv?

	Dimensions

	xt, yt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Adjusted CO2 difference

	
VerosState.rcak

	
	Units

	1

	Dimensions

	xt, yt, zt

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	Attributes

	

Calcite is redistributed after production by dissolution varying by depth

Biogeochemistry diagnostic

This module monitors total phosphate and produces interaction graphs for the biogeochemistry module

	
class veros_bgc.diagnostics.npzd_monitor.NPZDMonitor(setup)

	Bases: veros.diagnostics.diagnostic.VerosDiagnostic

Diagnostic monitoring nutrients and plankton concentrations

	
name = 'npzd'

	

	
output_frequency = None

	Frequency (in seconds) in which output is written

	
save_graph = False

	Whether or not to save a graph of the selected dynamics

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W
 | Z

A

 	
 	alkalinity (VerosState attribute)

 	
 	assimilation_efficiency (veros_bgc.core.npzd_tracers.Zooplankton attribute)

 	atmospheric_co2 (VerosState attribute)

B

 	
 	bottom_mask (VerosState attribute)

C

 	
 	cflux (VerosState attribute)

 	
 	co2star (VerosState attribute)

D

 	
 	dayfrac (VerosState attribute)

 	dco2star (VerosState attribute)

 	description (veros_bgc.core.npzd_tracers.NPZD_tracer attribute)

 	
 	detritus (VerosState attribute)

 	dic (VerosState attribute)

 	dpCO2 (VerosState attribute)

E

 	
 	excretion_total (VerosState attribute)

G

 	
 	GlobalFourDegreeBGC (class in veros_bgc.setup.bgc_global_4deg)

 	grazing_preferences (veros_bgc.core.npzd_tracers.Zooplankton attribute)

 	
 	grazing_saturation_constant (veros_bgc.core.npzd_tracers.Zooplankton attribute)

 	growth_efficiency (veros_bgc.core.npzd_tracers.Zooplankton attribute)

 	growth_parameter (veros_bgc.core.npzd_tracers.Phytoplankton attribute)

H

 	
 	hSWS (VerosState attribute)

L

 	
 	light_attenuation (veros_bgc.core.npzd_tracers.NPZD_tracer attribute)

M

 	
 	max_grazing (veros_bgc.core.npzd_tracers.Zooplankton attribute)

 	
 	maximum_growth_temperature (veros_bgc.core.npzd_tracers.Zooplankton attribute)

 	mortality_rate (veros_bgc.core.npzd_tracers.Plankton attribute)

N

 	
 	name (veros_bgc.core.npzd_tracers.NPZD_tracer attribute)

 	(veros_bgc.diagnostics.npzd_monitor.NPZDMonitor attribute)

 	
 	NPZD_tracer (class in veros_bgc.core.npzd_tracers)

 	NPZDMonitor (class in veros_bgc.diagnostics.npzd_monitor)

O

 	
 	output_frequency (veros_bgc.diagnostics.npzd_monitor.NPZDMonitor attribute)

P

 	
 	pCO2 (VerosState attribute)

 	Phytoplankton (class in veros_bgc.core.npzd_tracers)

 	
 	phytoplankton (VerosState attribute)

 	Plankton (class in veros_bgc.core.npzd_tracers)

 	po4 (VerosState attribute)

R

 	
 	rcak (VerosState attribute)

 	rctheta (VerosState attribute)

 	
 	Recyclable_tracer (class in veros_bgc.core.npzd_tracers)

 	recycling_rate (veros_bgc.core.npzd_tracers.Recyclable_tracer attribute)

S

 	
 	save_graph (veros_bgc.diagnostics.npzd_monitor.NPZDMonitor attribute)

 	
 	sinking_speed (veros_bgc.core.npzd_tracers.NPZD_tracer attribute)

 	swr (VerosState attribute)

T

 	
 	transport (veros_bgc.core.npzd_tracers.NPZD_tracer attribute)

W

 	
 	wind_speed (VerosState attribute)

Z

 	
 	Zooplankton (class in veros_bgc.core.npzd_tracers)

 	
 	zooplankton (VerosState attribute)

 nav.xhtml

 Table of Contents

 		
 A biogeochemistry module for Veros

 		
 Basic usage

 		
 Custom rules and tracers

 		
 Tracer classes

 		
 Predefined tracers

 		
 Extending tracers

 		
 Rules

 		
 Optional arguments

 		
 Difference between rules and tracer classes

 		
 Activation

 		
 Setup gallery

 		
 Configurations with Biogeochemistry

 		
 Available settings

 		
 Available variables

 		
 Conditional variables

 		
 enable_npzd

 		
 enable_carbon

 		
 Biogeochemistry diagnostic

_images/bgc-4deg.png

_static/plus.png

_static/file.png

_static/minus.png

